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Dramatic progress has been made in deenao design of
4-o-helix bundle proteins based upon hydrophobic stabilization.

Bundles with the expected size, mass, aggregation, and helicity

have been synthesizédjowever, conformational lability is a
common problerdfdhi resulting in proteins that resemble a
“molten globule”> A novel model of the bundle is proposed
which provides insight into the source of the conformational
lability and into a source of very low-frequency vibrations of
proteins containing amphiphilia-helices.

The amphiphilico-helix is the building block of the bundle.
One face is hydrophobic or nonpolar; the other is polar. The
polar side chains, assumed to be randomly oriepitadst give
a resultant radial dipole moment. The axial components of the
side-chain dipoles will cancel, but the radial components will
not as they exist only on the polar face (Figure 1). The vector
sum of the axial dipole momept (3.5 debye/residue 8f.q at
the end of each helfy and the radial dipole momept gives
a resultaniu that is off-axis (Figure 2). | have constructed a
model of the 4a-helix bundle based on this concept. Calcula-
tion of the distance between opposite ends of two helix dipoles
is shown in Figure 2r(= magnitude of the radial moment) for

the synchronous rotational mode indicated. Distances between

dipole ends are
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The total electrostatic energy is then, witke 10¢p = 8.9 x
10711 g1 CZ m1
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Figure 1. Helical wheel diagram for an-helix looking down the long
axis from the N-terminus to the C-terminus. Axial dipole moments
(filled circles) are coming out of the paper; radial dipole moments are
represented by arrows.
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Figure 2. Geometry for and deviation of(z,r).
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A graph ofE(zr) vszandr is shown in Flgure 3. The following
parameters are standard: interhelical distashee12 x 10710

m, helical lengtH = 15 x 1071%m, charge 0., —3n/4 < z <

57/4, 0 < r < 6.0 x 10719 m, and the dielectric constarit

10. The popular approach of using the gas phase dielectric
constantep is unrealistic because it overestimates interaction
energies by a factor of 28405 The magnitude of is chosen
arbitrarily to be less than the helix radius. The interaction of
the solvent is treated according to Chothia’s anafysfsthe
hydrophobic effect: both polar and nonpolar side chains exhibit
an equal effect when normalized to equal surface area. The
free energy for synchronous rotation of the helices about their
long axes is themM\G,; = AE(z,r). Conformational entropy
effects for axial helical rotation, shown to be important for
certain crystalline homopolymefsare modeled as negligible
for bundles in water because of compensating effexdsside
chains move from the protein interior to solvent and vice versa.
Connecting loops will stabilize the bundle against unfolding,
but the fine structure of the bottom of the energy well is
determined byE(z,r).
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Fielix Bundle Encrgy E(z.) (1) multiply and divide by ¢ + r* + 2%
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Figure 3. 3-D surface plot oE(z,); i = 0...30,z = —3n/4 + 7i/15,

(3) simplify further by expanding cos(®4)—2z) about 9/4
r=02x 101

(z=0): cosq=(1— (q%/2))

2=x/2 =0
. -1 drv2 ( 22) 2, .2 2\—1/2
2) ={1l+—"7——1 - (" +r"+2d
9 : (2+r2+2d)\ 2 ( )
£ =hydrephobic
free (4) the derivative with respect & the torsional angle, is
dg@ ' Jedrz
.-::::elrdipole moment coming out of dz (|2 + r2 + 2d2)3/2

Possible ANS

binding site raxial dipote moment going into paper

A similar treatment of the other potential energy terms

Figure 4. The most stable rotational conformers of a bundle with a (r < 5.3 x 1071% drop Z* termg?) yields
significant dipole moment.

2
Though highly simplified, the model affords insight into the di(z) = (%iq) _gdr__, Sd+2) Zd“/i,z
properties ofde nao bundles. If the radial dipole moment of z €10 +d) (I +d) (r2 + d_)
the helices is smallr(< 3), the bundle will exist in wide range 2
of rotational states of nearly equal energy (Figure 3) as expected 4drv/2

of a “molten globule”. Nonpolar side chains will be exposed o\ 2= Kz
to solvent and thus able to bind AN Figure 4). The bundle (r°+ 17+ 2d)
will be conformationally labile as reflected in proton magnetic
resonance dispersiof®) fluorescence emissions, and fluores- e gifferential equation (1) is now that of simple harmonic
cence decay constaritd:'* Furthermore, one would not expect  qtion with frequency
the bundle to crystallize; as yet, no crystalline speciesief
novo 4-a-helix bundles have been isolated. For 4 two
isoenergetic conformers will exist € 0, z = 7/,, Figure 4). |
suggest that thde nao a4 bundle described as existing in two
nearly isoenergetic states, as binding ANS, and as having poor
'H NMR dispersiond might contain helices with substantial for | = 8.9 x 104 kg:m? (glycine decapeptide). This
radial dipole moments. frequency is in the far-infrared region of the spectrum and is
According to this model, a rigid helix should undergo an upper limit, as the moment of inertia will be larger for
harmonic vibrations about the long axis. The differential amphiphilic helices with side chains other than hydrogen. The
equation describing such vibrations as a function of torsional model for torsional vibrations may account for some of the low-
angle and potential energy is frequency absorption bands that have been observed for protein
films and crystald3
The assumption of an-helix radial dipole moment leads to
a straightforward explanation of the conformational properties
of de nao a-helix bundles and yields an analytical expression
for the force constant of a type of low-frequency vibrational
mode. Further testing of the model will require an estimate of
the radial dipole moment of the helices inda nao bundle.
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The moment of inertia of the helix is z the torsional angle,
E(z)the potential energy, aridthe force constant. Thed(&r)

potential energy term can be simplified as follows:
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